
A Fault-Tolerant MPSoC For CubeSats
Christian M. Fuchs∗§, Pai Chou§, Xiaoqing Wen¶, Nadia M. Murillo†,

Gianluca Furano‡, Stefan Holst¶, Antonios Tavoularis‡, Shyue-Kung Lu‖, Aske Plaat∗, and Kostas Marinis‡
∗Leiden Observatory, ‡European Space Agency, Netherlands, ¶Kyushu Institute of Technology, Japan
§National Tsing Hua University ‖National Taiwan University of Science and Technology, Taiwan

email: christian.fuchs@dependable.space

Abstract—We present the implementation of a fault-tolerant MP-
SoC for very small satellites (<100kg) based upon commercial
components and library IP. This MPSoC is the result of a co-
design process and is designed as an ideal platform for software-
implemented fault-tolerance measures. It enforces strong isolation
between processors, and combines fault-tolerance measures across the
embedded stack within an FPGA. This allows us to assure robustness
for a satellite on-board computer consisting of modern semiconduc-
tors manufactured in fine technology nodes, for which traditional
fault-tolerance concepts are ineffective. We successfully implemented
this design on several Xilinx UltraScale and UltraScale+ FPGAs
with modest utilization. We show that a 4-core implementation is
possible with just 1.93 W of total power consumption, which for the
first time enables true fault-tolerance for very small spacecraft such
as CubeSats. For critical space missions aboard heavier satellites,
we implemented an MPSoC-variant for the space-grade XQRKU060
part together with the Xilinx Radiation Testing Consortium. The
MPSoC was developed for a 4-year ESA project. It can satisfy the
high performance requirements of future scientific and commercial
space missions at low cost while offering the strong fault-coverage
necessary for platform control for missions with a long duration.

I. INTRODUCTION

Satellite miniaturization has enabled a wide variety of scientific
and commercial space missions, which previously were technically
infeasible, impractical, or simply uneconomical. However, due to
their low reliability, miniaturized satellites (<100kg) are typically
considered unsuitable for critical space missions and high-priority
science. The on-board computer (OBC) and related electronics,
which constitute a large part of such spacecraft, have been shown
responsible for a significant share of post-deployment failure [1].
Indeed, these components often lack even basic fault tolerance
(FT) capabilities.

Due to budget, energy, mass, and volume restrictions, existing
FT solutions originally developed for larger spacecraft cannot
be adopted. In this paper, we present the implementation of an
MPSoC designed specifically as platform for a hardware-software
hybrid fault-tolerance architecture. We utilize topological features
to achieve a design that allows software-implemented FT concepts
to maximize their fault-coverage strength, providing FT even for
CubeSats. The MPSoC can be assembled from well-tested COTS
components, library IP, and powerful mobile-market processor
cores. We have successfully implemented it on several different
FPGA families.

In the next section, we introduce the fault-profile of our appli-
cation and discuss related work. Subsequently, we describe our
MPSoC and our cross-stack fault-tolerance approach. We provide
implementation results in Section IV. Finally, we discuss advanced
applications of our proof-of-concept, and conclude this paper with
a comparison to miniaturized and large satellite computing.

II. BACKGROUND AND RELATED WORK

The main sources of faults in the space environment are highly
charged particles. These are ejected by the Sun, especially during
Solar Particle Events, and arrive as Cosmic Rays from beyond our
solar system [2]. Particles interact with a spacecraft’s electronics,
and can induce different effects depending on the type of particle
and its charge. They can corrupt logical operations and induce
bit-flips within semiconductor logic and memory (single event
effects - SEE), and may cause displacement damage (DD) at

the molecular level. The cumulative effect of charge trapping
in the oxide of electronic devices (total ionizing dose – TID)
further impacts the lifetime of an OBC. Radiation events can also
cause functional interrupt in circuits, interfaces, or even entire
chips (single event functional interrupts – SEFIs). The energy
threshold above which a particle can induce transient faults in
chips manufactured in finer technology nodes decreases. In turn,
the ratio of multi-bit upsets or permanent faults increases. How-
ever, recent-generation semiconductor manufactured in certain
modern technology nodes (e.g. FinFET and FD-SoI) show better
performance under radiation than predicted by models [3].

A. Fault-Tolerance for Spacecraft

Traditional FT computers for spaceflight [4] implement circuit-
or RTL- [5], IP-block- [6], [7], and OBC-level TMR [8] using
space-proprietary IP. Circuit-, RTL-, and core-level measures are
effective for small microcontroller-SoCs [9], [10], if they are
manufactured in large feature-size technology nodes. Additional
FT-circuitry is needed to compensate for the increased severity
of radiation effects with modern technology nodes [9]. Processor
lockstep implemented in hardware lacks flexibility, limits scal-
ability, and is feasible only for very small MPSoCs with few
cores [10], [11]. Timing and logic placement becomes increasingly
difficult for more sophisticated processor designs, and becomes
infeasible for SoCs running at higher clock frequencies. Practical
applications run at very low clock frequencies with two or three
simple processor cores, even for ASIC implementations [6], [10].

Nanosatellite developers instead use the same energy efficient,
cheap modern electronics [12] for which traditional radiation-
hardening concepts become ineffective. Especially CubeSats uti-
lize COTS microcontrollers and application processor SoCs, FP-
GAs, and combinations thereof [12], [13]. Some computer designs
for nanosatellites utilized redundancy at the component level
to achieve fail-over, and provide at least some protection from
failure. However, practical flight results show that such designs
are complex and fragile, as compared to entirely unprotected ones
[12], [14]. These in turn may fail at any given point in time, but
CubeSat designers today are forced to accept this risk and hope
that their system will not experience critical faults before their
satellite’s mission is concluded. Risk acceptance is viable only
for brief educational, uncritical, low-priority missions.

B. Fault-Tolerance Concepts for COTS Technology

Commodity FPGAs have become popular for miniaturized
satellite applications as they allow a reduction of custom logic
and component complexity. FPGA-based SoCs can offer in-
creased FDIR potential in space over ASICs manufactured in the
same technology nodes [13]. Transients in configuration memory
(CRAM) can be recovered through reconfiguration [15]. How-
ever, fine-grained, non-invasive fault detection in FPGA fabric
is challenging [9], and is a subject of ongoing research [16],
[17]. Applications thus rely on scrubbing, which has scalability
limitations and covers only parts of the fabric.

Software-implemented fault-tolerance concepts for multi-core
systems were identified as promising already in the early days of
microcomputers [18], but they have been technically infeasible and
inefficient until few years ago. Modern semiconductor technology
allows us to overcome these limitations, and recent research978-1-7281-2260-1/19/$31.00 c©2019 IEEE

[19], [20] has shown that modern MultiCore-MPSoC architectures
can theoretically be exploited to achieve FT. However, current
concepts are incapable of general-purpose computing, and instead
cover deeply embedded applications with a very specific software
structure [21], [22]. They require custom processor designs [19], or
programming models that are suitable for accelerator applications
[20]. They are not meant to run a full operating system with stan-
dard software. The fundamental concept of software-implemented
coarse-grain lockstep, however, is flexible and can be applied, e.g.,
to MPSoCs for safety-critical applications [19], [23], networked,
distributed, and virtualized systems [24].

III. FAULT-TOLERANCE THROUGH CO-DESIGN

Software-implemented fault-tolerance concepts only offer weak
protection, unless combined with other protective measures to
achieve synergies [23]. To assure sufficient long-term protection
for space applications in space missions with an extended duration
with just COTS component, a suitable architecture and system
topology is required. In this section, we describe how a hardware-
software co-designed MPSoC can achieve strong fault-tolerance
by combining software-implemented fault-tolerance measures with
topological features, error correction coding (ECC), and FPGA
reconfiguration. Not only can this MPSoC run unmodified stan-
dard application software but also efficiently counter resource ex-
haustion and age gracefully. It consists of only COTS technology
and requires no proprietary FT processor IP, hardware-lockstep,
or other scalability-limiting design measures.

A. Software and System-Level Fault-Tolerance

The main target platform for our research is the ARM Cortex-
A53 application processor, which is widely used in mobile-
market devices. However, our system architecture is independent
of the processor and platform. For low-cost CubeSats, the use of
proprietary IP will often be impractical due to cost constraints and

the time necessary to obtain such IP. Hence, freely available soft-
cores such as the mature MicroBlaze by Xilinx are better suited
for very small satellite applications. The MPSoC described in this
paper therefore uses MicroBlaze soft-cores, and provides an ideal
platform for this multi-stage fault-tolerance approach:

Stage 1 utilizes coarse-grain lockstep to generate a distributed
majority decision between threads replicas and implements for-
ward error correction. It maintains state-synchronization be-
tween applications running on a set of otherwise independent
processor cores. We analyzed the computational cost of our
lockstep in [26] and validated it through fault-injection in [27].
Stage 1 utilizes thread-migration, and requires spare processing
capacity in the system to handle permanent faults.

Stage 2 corrects faults in an FPGA’s CRAM and recovers
the integrity of processor cores to counteract exhaustion of
spares and processing capacity. Its objective is to repair partial-
reconfiguration partitions through reconfiguration and the use of
differently routed and placed partition variants.

Stage 3, described in detail in [28], engages when then system
has exhausted all available spares due to accumulating perma-
nent defects in an aged FPGA. It re-allocates processing time
between applications to maintain a reliable system. We utilize the
mixed criticality properties inherent to on-board data processing,
assuring sufficient compute resources are available to high-
criticality applications. This enables an MPSoC to age grace-
fully by trading performance for energy saving or robustness.

B. Achieving Robustness through Topology

An MPSoC designed for robustness must utilize a topology that
avoids single points of failure and supports FDIR where possi-
ble. However, conventional MPSoCs follow a centralist topology
where cores share infrastructure as much as possible to minimize
the design’s footprint, optimize timing, improve routing, thereby
achieving higher clock frequencies [29]. Therefore, conventional

Fig. 1: Logic placement of our proof-of-concept quad-core MPSoC for the upcoming XRTC Kintex UltraScale KU60 device-test
board. A QSPI controller is highlighted in teal for size-comparison between an interface core and a compartment’s total size.

MPSoC typologies actively try to reduce isolation between cores
to make inter-process-communication and thread-migration less
costly. Considering the impact of faults on an application’s control
flow and data path, this implies little to no isolation for soft-
ware running on different processor cores. Faults in one core
may therefore induce negative effects into other cores. From a
fault-tolerance perspective, this is undesirable, and we instead
implement an MPSoC topology that offers isolation by design.
Its logic placement is depicted in Figure 1, and we will discuss
the rationale behind our architecture subsequently.

To keep application replicas isolated, we place each processor
core within a separate compartment. A compartment is comprised
of the minimum set of IP-blocks constituting a conventional
single-core SoC, including interrupt controller, peripheral con-
trollers, I/O, and bring-up software. Each compartment is outfitted
with an interconnect access bridge to allow low-level diagnostics
and access to the compartment’s address space by an off-chip
supervisor. A compartment runs an instance of the OS, is assigned
one or multiple applications, has access to hardware timers,
interrupts, and can handle peripheral I/O autonomously. Besides
an on-chip memory holding the bootloader, it is also outfitted with
a dedicated dual-port state-memory used to exchange lockstep
information. A block diagram is depicted in Figure 2.

On-chip memory is insufficient to store a modern operating sys-
tem and application software. Hence, a compartment also requires
access to larger non-volatile mass-memory and DDR/SDRAM.
PCB layout constraints, energy constraints, complexity, and the
large footprint of DDR memory controllers make it infeasible to
instantiate these memories for each compartment. Therefore, we
implement a two-tiered interconnect architecture as depicted in
Figure 2, with off-chip memory and their controllers being shared
between compartments in sets.

The main source of faults in commercial memory ICs are
data corruption due to SEE-induced bit-upsets and SEFIs [30].
We counter bit-upsets through the use of ECC and interconnect-
level error scrubbing. In our MPSoC, we realize SECDED coding
using library and open-source IP, which are usually considered
sufficient for CubeSat-use. Stronger protection can be achieved
using commercial IP. To avoid introducing a single point of
failure and to handle SEFIs economically, we implement redun-
dant memories controller sets. In case one set fails and requires
reconfiguration, the compartments can switch over to the fail-over
instance at runtime. The availability of multiple controller sets also
enables load-distribution for memory access, and reduces latency
due to concurrent access by multiple compartments. In practice,
compartments thus cannot saturate DDR controllers.

The address space of all compartments is uniform, enabling
memory structures to be migrated between compartments and
re-used. To each compartment and in each controller set, we

Fig. 3: Partition layout and clocks in our MPSoC. Partitions are
indicated with dashed lines. Compartment and memory controller
sets (Xa/b) can be reconfigured without interruption.

Shared
Memory

Set B

Shared
Memory

Set A

Compartment 4

Compartment 1

Compartment 3

Compartment 2

Memory
Scrubber

Xa

MMU

MMU

DDR ctlr
+ ECC

SM

SM

MMU

SM

MMU

SM

Memory
Scrubber

DDR ctlr
+ ECC

QSPI ctlr

QSPI ctlr

DBG

DBG

DBG

DBG

Xb

IF

IF

IF

IF

Xs

SEM

Supervisor
Access

Port

ICAP

Config.
Controller

CLK

CLK

CLK

CLK

CLK

CLK

CLK

CLK CLK

CLK

allocate a main memory segment. A compartment has read-only
access to the other segments. Segments are isolated through the
interconnects topology, which requires modifying the interconnect
IP’s configuration in order to enable write access. Through the
MMU component indicated in Figures 2 and 3, we perform the
necessary address translation operations. A failed compartment
therefore cannot corrupt another compartment’s memory segment.
This eliminates a system-wide single point of failure.

To efficiently perform lockstep state comparison and syn-
chronization between compartments, an MPSoC has to provide
adequate means of exchanging state-data. For small MPSoCs with
less than six cores, this is realized in DDR/SDRAM memory.
For larger designs, a dedicated state-exchange network improves
performance and offers stronger isolation. These components are
depicted in green in the figures. Access to state memory then
takes place entirely on-chip without passing through caches and
the global interconnect.

State
Memory

State
Memory

Compartment

Debug
Bridge

MMU

X State
Memory

Memory
Scrub

CoreIRQ

Inter
faces

Supervisor

R
es

et
G

en

C
ac

he

C
lo

ck
G

en

Xs

r/o

Main
Memory

MRAM
(OS)

NAND Flash
(Payload Data)

QSPI ctlr

Xa

DDR ctlr
+ ECC

Other State
Memory

Fig. 2: The high-level architecture of a compartment. Access to local IP and state memory bypasses the cache, while access to global
memory is cached to avoid interconnect congestion. MRAM memory cells are inherently radiation immune [25].

C. Logic Isolation and Partitioning

Permanent damage to FPGA-fabric can be mitigated though
reconfiguration with a differently routed and placed configuration
variant [15]. However, full reconfiguration interrupts the operation
of the implemented MPSoC. To enable continued operation during
reconfiguration, each compartment and memory controller set
resides in a dedicated partial reconfiguration partition. Partial
reconfiguration also increases the likelihood that a suitable combi-
nation of partition-variants can be found to mitigate all permanent
faults present in the FPGA’s fabric.

Large clock trees and reset networks are known to be problem-
atic in space applications [31]. The logic in each compartment
resides in a separate clock domain, and a memory controller set
controls each of the DDR4 backend, memory controller front-ends,
and AXI-interconnects. Therefore, the clock trees are isolated from
each other and are de-coupled on the AXI interconnects of the
memory controller sets. This minimizes clock skew and its impact,
as well as temperature-related effects, while improving timing and
logic routing.

To protect the running configuration of our SRAM-based FPGA,
we implement CRAM-frame ECC using the Xilinx Soft Error
Mitigation IP (SEM [32]). However, configuration-level erasure
coding and scrubbing can still only detect faults in specific
components of the FPGA fabric (e.g., not in BlockRAM). We
address this limitation at the system level: the coarse-grained
lockstep functionality in Section III-A enables us to detect faults
in the fabric with compartment granularity within 1-3 lockstep
cycles [26]. In practice, this closes the fault-detection gap left
by scrubbing and configuration erasure coding. This process is
described in detail in [27].

We place a reconfiguration controller in static logic to perform
high-speed reconfiguration via ICAP. It communicates with the
Xilinx UltraSEM IP and can be deactivated by the supervisor in
case of failure, in which case the off-chip supervisor can also deac-
tivate via JTAG. It has access to the FPGA’s configuration memory
through an SPI controller core. Architecturally, we implement
the configuration controller using a stripped-down compartment
design without the capability to run a full OS.

D. External Components

In our proof-of-concept, we utilized DDR4-DRAM as main
memory, Magnetoresistive RAM (MRAM) [25] to store operating
system code and data, NAND-flash as mass memory for appli-
cation data, and NOR-Flash to store the FPGA’s configuration.
DRAM and NOR-flash are commonly used in all FPGA-based
systems and their use currently cannot be avoided. However,
relatively low-cost radiation-robust variants of these components
are available commercially. Commercial MRAM memory cells
are inherently radiation immune [25] and are today widely used
aboard CubeSats due to their excellent performance in the space
environment. To store payload data, radiation-soft NAND-Flash
is used. At the time of writing, flash memory is widely used in
all space applications, and currently there is no readily available
radiation-immune alternative. We mitigate SEFIs and faults in
addressing and control logic through the use of software-level error
detection and correction at the file-system and block level [27].
Radiation-immune phase-change memory [33] can be a prime
candidate for replacing NAND flash once commercially available.

The off-chip supervisor above is implemented through a low-
performance microcontroller and performs management tasks as
well as debugging. It triggers checkpoints and receives voting
results from the compartments via a set of GPIO pins and
maintains a fault-counter for each compartment. In our proof-of-
concept MPSoC, it also adjusts thread-assignment for the coarse-
grain lockstep, but this is a simplification to reduce development
time. The supervisor takes no part in the normal data processing

operations of the OBC and requires very little processing power.
Therefore, a variety of available radiation-robust low-performance
products can also be used aboard CubeSats.

IV. UTILIZATION AND POWER COMPARISON

The quad-core MPSoC architecture described in this paper
has been implemented on a set of Kintex UltraScale and Ul-
traScale+ devices using Xilinx MicroBlaze soft-cores running
at 300 MHz, and DDR4 controllers. In our proof-of-concept,
we utilize a FeRAM-based MSP430FR5969 controller for our
proof-of-concept, for which a low-cost space-grade substitute is
available. The MPSoC is reproducible in Xilinx Vivado 2017.1 and
later. The necessary IP is included in the Vivado IP library and
can be obtained free of charge through Xilinx’s university program
by academics and non-commercial scientific users. This serves
as proof-of-concept for our architecture, with resource utilization
indicated in Table I.

For this MicroBlaze-based MPSoC implementation, the added
logic footprint for instantiating a compartment is low compared
to just an application-processor without any peripherals. For size
comparison between an interface IP-core and a compartment, a
QSPI controller core is highlighted in Figure 1 in teal. It makes
up only 2.5% of a compartment’s LUT and 6% BRAM utilization,
with other commonly used cores aboard CubeSat such as I2C or
UART showing a similar or even lower footprint. The larger size of
ARM Cortex-A53 processor cores reduces this ratio even further.

Our initial proof-of-concept was implemented on the Xilinx
Virtex UltraScale+ VCU118 Evaluation Kit with DDR4 controllers
running at 1600 MHz. This FPGA family was ideal for design
space exploration as the kit has two DDR4 memory channels and
a large fabric. Within the Xilinx Radiation Test Consortium, we
have been porting our design to the consortium’s upcoming Kintex
UltraScale KU60/XQRKU060 test board for radiation testing.
Logic and partition placement are depicted in Figure 1. Tables
I and II show the FPGA utilization and power consumption.
On KU60, DDR4 memory controllers run at 1000 MHz due to
generational constraints.

We ported our MPSoC also to smaller Kintex UltraScale+ de-
vices, including the KU60’s closest equivalent part KU11P and the
smallest FPGA in the family and generation, the KU3P. The port
required minor adjustments to the utilization of clocking resources,
as both KU11P and KU3P have fewer clocking-resource (MMCM
and PLL tiles) than the KU60. On KU11P, it was sufficient
to switch several clock-generators used in the shared memory
controller sets from PLL to MMCM tiles, without changing other
parameters. The main constraint of the KU3P, however, required a
reduction of clock generators in memory controller sets to 1 clock
domain instead of 3 as described in Section III-C. Due to the
much smaller fabric of the KU3P, clock-domain sizes and routing
distances decrease, resulting in better timing of the design.

Despite much lower dynamic power consumption across the
board in UltraScale+, the KU11P variant shows slightly higher
static power consumption than the KU60, which is counter-
intuitive. After discussion within the Xilinx Radiation Testing

KCU3P % KCU11P % KCU60 %
LUT 52.55% 29.20% 39.91%
LUTRAM 9.33% 6.49% 13.30%
FF 28.81% 16.08% 23.91%
BRAM 84.31% 50.58% 29.26%
DSP 2.19% 1.02% 1.09%
IO 73.68% 43.75% 60.58%
BUFG 8.20% 3.20% 4.17%
MMCM 50.00% 25.00% 16.67%
PLL 87.50% 56.25% 54.17%

TABLE I: Resource utilization our MPSoC on different Xilinx
Kintex FPGAs. The XRTC variant’s DDR4 memory controllers
has a larger data-width due to package constraints.

TABLE II: Power consumption of the 3 MPSoC implementations.
Data from the Vivado Implementation Power Report.

KCU3P KCU11P KCU60
Clocks 0.22W 0.29W 0.71W
Signals 0.11W 0.15W 0.30W
Logic 0.11W 0.15W 0.42W
BRAM 0.19W 0.19W 0.41W
DSP <0.01W <0.01W <0.01W
PLL 0.37W 0.46W 0.72W
MMCM 0.23W 0.23W 0.21W
I/O 0.27W 0.34W 1.50W
Dynamic 1.51W 1.81W 4.26W
Static 0.43W 0.70W 0.67W
Total Power 1.94W 2.51W 4.93W

Consortium, the most plausible explanation for this anomaly is
the different IO-bank placement within the fabric between these
devices. On KU60, IO-banks are placed in more favorable loca-
tions considering MPSoC design than on KU11P. This increases
logic-spread, leaving less fully inactive fabric sections, which
could explain an increase in static power consumption due to
infrastructure on KU60.

The resulting UltraScale+ MPSoC implementations, while func-
tionally equivalent, show a 50% lower power consumption than
the previous generation. This is due to manufacturing in a 16 nm
FinFET technology node instead of 20 nm planar. Power savings
mainly come from a reduced dynamic power consumption of this
design, due to an increased degree of logic concentration in a
smaller FPGA-fabric area. For CubeSat-use, the Kintex Ultra-
Scale+ family is therefore more attractive, despite the acceptable
potential risk of IO-pin latch-up [34], which today is mitigated
in related work [35] at the system level. On the the smallest
UltraScale+ part xcku3p-sfvb784 available at the time of
writing, we achieved 1.94 W total power consumption. This is
well within the power budget range of existing 2U CubeSats, as
shown through comparison in Table III.

Synthesis was run in “Alternative Routability”, and implementa-
tion in “Performance-Explore” strategy with post-route placement
& power optimization, as the resulting implementations showed
consistently better timing and power utilization.

V. EXPERIMENTAL RESULTS AND VALIDATION

We have tested this MPSoC on Xilinx VCU118 with two DDR
memory channels, and on a KCU116 board with one channel (due
to board constraints). From these setups, we have successfully
developed a breadboard OBC-setup with an MSP430FR MCU.

In 2018, we tested our architecture through fault injection
using system emulation, and published preliminary test results in
[27]. In 2019, we constructed a multi-core model of our MPSoC
also in ArchC/SystemC on RISC-V to compare and reconfirm
our tests from 2018 with a different fault-injection technique

closer to hardware. These results show that with near statistical
certainty, a fault affecting a compartment can be detected within
1–3 lockstep cycles. This demonstrates that Stage 1 is effective
and works efficiently. A full report on this validation is pending
publication: it includes results for a 3-way comparison with
different fault-injection techniques, plus upcoming test results for
another lockstep implementation published by Dobel et al. in [36].
Next, we plan to construct a prototype for radiation testing with
the Xilinx Radiation Testing Consortium and eventually for on-
orbit demonstration in a CubeSat.

VI. HANDLING FPGA FAILURE AND SEFIS

Our proof-of-concept MPSoC design spans only of a single
FPGA and is not designed to withstand component-wide SEFIs
affecting the entire FPGA. However, it can be implemented to
tolerate such faults and even full component failure. The system
depicted in Figure 4b implements our architecture on two FPGAs
and does not suffer these limitations: instead of implementing
all compartments and shared memory controller sets on a single
FPGA, they can be distributed across multiple FPGAs. The failure
of, e.g., a memory component or connected to one FPGA or
its controller, does not cause the failure of an entire redundant
system side. Compartments on one FPGA connected to a failed
component can access components on the B-side. Even a severely
degraded system implementing our architecture that has suffered
multiple component failures can thus still operate correctly and
support non-stop operation. In contrast to a traditional OBC
based on component-redundancy, our architecture thus can deliver
stronger fault-tolerance capabilities than traditional OBCs.

To support larger MPSoCs with more than eight compartments
efficiently, a more scalable interface between compartments and
memory controller sets should be used, such as a Network-on-
Chip (NoC). An NoC not only allows drastically larger MPSoC
designs [37] due to improved scalability, but also enables fault-
tolerant routing [20], backwards error correction (re-transmission),
and quality-of-service support [38]. When implementing our archi-
tecture with an NoC, the shared memory controller sets would be
implemented as one NoC layer, while the state-exchange network
forms a second layer. In contrast to conventional interconnects
topologies, NoC routers can also implement error correction [39].

VII. CONCLUSIONS AND FUTURE WORK

We have presented the implementation of an MPSoC that can
assure robustness for a satellite on-board computer consisting
of modern semiconductors manufactured in modern technology
nodes. It is the result of a hardware-software co-design process
and utilizes fault-tolerance measures across the embedded stack.
We utilize a set of software-implemented fault-tolerance measures
and realize forward-error-correction through coarse-grain lock-
step. This functionality is combined with erasure coding, error

On-Board Network

OBC SoC

A

DDR
B

Transceiver + RedWave

OBC SoC

B
Flash

B

DDR
A

Flash
A

A/B Switch

On-Board Network

FPGA
A DDR

B

Transceiver + RedWave

FPGA
B

Flash
B

DDR
A

Flash
A

C1 C2

C3 C4

C5 C6

C7 C8

(b)(a)

Fig. 4: (a): A traditional redundant system where there A-side failed due to malfunction in one memory components, which will fail
once a fault occurs on the B side. (b): a system implementing our architecture, which is still functional and not degraded, even though
multiple components have failed on both sides.

TABLE III: Comparison of the proposed MPSoC to 5 existing solutions for large spacecraft (grey) and CubeSats. Manufacturer data
sheets information current as of July 2019. Clydespace OBC p.n. 01-02928. GR740 power value from Gaisler’s Power Calculator.

RAD5545 GR740 NanoMind Z7000 Our MPSoC ClydeSpace CubeSatKit D2
Architecture MPSoC MPSoC MPSoC MPSoC SoC uC

Implementation ASIC ASIC Hybrid FPGA FPGA ASIC
Cores 4, 5600MIPS total 4, @250Mhz 2, @800Mhz 4+, @300Mhz+ 1, @50Mhz 1, <80Mhz

CPU Core RAD5500 LEON4 Cortex-A9 MicroBlaze Cortex-M3 dsPIC33
RAM+OCM 4GB 4GB max. 1GB 4GB+ 8MB 286KB

Storage 1GB external 32GB external 4GB 8MB
Free Toolchain No + NDA No + NDA yes yes yes yes

Software Linux & Co Linux & Co Linux & Co Linux & Co RTOS bare metal
Cost high high low low low lowest

Max Power >20W 1.65W 2.3W 1.94W 1W 0.73W
Fault-Tolerant yes yes no yes no no

scrubbing, partial FPGA reconfiguration, and an MPSoC topology
designed for logic and data isolation.

A comparison to existing traditional space-grade solutions as
well as those available to CubeSat developers seems unfair, but
is depicted in Table III. Today, miniaturized satellite computing
can use only low-performance microcontrollers and unreliable
MPSoC designs without fault-tolerance capabilities. Using the
same type of commercial technology, our MPSoC can assure long-
term fault coverage through a multi-stage fault-tolerance archi-
tecture, without requiring fragile and complex component-level
replication. Considering the few more robust, low-performance
CubeSat compatible microcontrollers for which the PIC-equipped
CubeSatKit D2 OBC is representative, our implementation can
offer a beyond factor-of-10 performance improvement even today.
Our current academic proof-of-concept implemented on FPGA
exceeds the single-core performance of the latest generation of
space-grade SoC-ASICS such as an GR740, while offering fault-
tolerance capabilities. We do so at a fraction of the cost and
without the tight technological constraints of traditional space-
grade technology.

Traditional fault-tolerant computer architectures intended for
space applications struggle against technology and are ineffec-
tive for embedded and mobile-market components. Instead, we
designed a software-based fault-tolerance architecture and this
MPSoC specifically to enable the use of commercial modern
semiconductors in space applications. We do not require any
space-grade components, fault-tolerant processor designs, other
custom, or proprietary logic. Our proof-of-concept is designed for
ARM Cortex-A53 cores widely used in COTS MPSoCs, while
the reproducible design variant described in this contribution
utilizes MicroBlaze. It can be replicated with just standard design
tools and library IP, which are available free of charge to many
designers in academic and research organizations. Therefore, our
architecture scales with technology, instead of struggling against it.
It benefits from performance and energy efficiency improvements
that can be achieved through improved technology nodes, and
scales for designs with more, and powerful processor cores.

ACKNOWLEDGMENTS
We would like to thank Giorgio Magistrati of ESA/ESTEC, Kozo Takeuchi of JAXA, our

colleagues Gary Swift and Sebastian E. Garcia of the Xilinx Radiation Test Consortium, and
Melanie Berg of Space R2 LLC and and NASA Goddard Space Flight Center for their valuable
feedback, discussions, support and encouragement. We thank ARM Ltd. for making available
the relevant processor and infrastructure IP.

REFERENCES

[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data, developers’ beliefs
and the way forward,” in AIAA SmallSat, 2016.

[2] J. Schwank et al., “Radiation Hardness Assurance Testing of Microelectronic Devices and
Integrated Circuits,” IEEE Transactions on Nuclear Science, 2013.

[3] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-2015,”
in NASA NEPP/ETW, 2015.

[4] G. Lentaris et al., “High-performance embedded computing in space: Evaluation of plat-
forms for vision-based navigation,” Journal of Aerospace Information Systems, 2018.

[5] C. Carmichael, “Triple module redundancy design techniques for Virtex FPGAs,” Xilinx
Application Note XAPP197, 2001.

[6] K. Reick et al., “FT design of the IBM Power6 microprocessor,” IEEE micro, 2008.
[7] M. Hijorth et al., “GR740: Rad-hard quad-core LEON4FT system-on-chip,” in Eurospace

DASIA, 2015.

[8] K. D. Safford et al., “Off-chip lockstep checking,” Jun. 26 2007, uS Patent 7,237,144.
[9] A. Fedi et al., “High-energy neutrons characterization of a safety critical computing system,”

in IEEE DFT. IEEE, 2017.
[10] X. Iturbe et al., “A triple core lock-step ARM Cortex-R5 processor for safety-critical and

ultra-reliable applications,” in IEEE DSN-W, 2016.
[11] Á. B. o. de Oliveira, “Applying lockstep in dual-core arm cortex-a9 to mitigate radiation-

induced soft errors,” in LASCAS. IEEE, 2017.
[12] M. Swartwout, “The first one hundred CubeSats: A statistical look,” Journal of Small

Satellites, 2014.
[13] R. Carlson et al., “On the use of system-on-chip technology in next-generation instruments

avionics for space exploration,” in IEEE VLSI-SoC, revised paper. Springer, 2016.
[14] J. Bouwmeester, M. Langer, and E. Gill, “Survey on the implementation and reliability of

cubesat electrical bus interfaces,” CEAS Space Journal, 2017.
[15] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically reconfigurable SRAM-based

FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[16] M. Ebrahimi et al., “Low-cost multiple bit upset correction in SRAM-based FPGA configu-

ration frames,” IEEE Transactions on VLSI Systems, 2016.
[17] F. Rittner et al., “Automated test procedure to detect permanent faults inside SRAM-based

FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[18] T. Slivinski et al., “Study of fault-tolerant software technology,” 1984.
[19] M. Liu and B. H. Meyer, “Bounding error detection latency in safety critical systems with

enhanced execution fingerprinting,” in DFT. IEEE, 2016.
[20] E. Wachter et al., “A hierarchical and distributed fault tolerant proposal for noc-based

mpsocs,” IEEE Transactions on Emerging Topics in Computing, 2016.
[21] W. Liu, W. Zhang, X. Wang, and J. Xu, “Distributed sensor network-on-chip for performance

optimization of soft-error-tolerant MPSoCs,” IEEE Transactions on VLSI Systems, 2016.
[22] U. Martinez-Corral et al., “A fully configurable and scalable neural coprocessor ip for soc

implementations of machine learning applications,” in NASA/ESA AHS. IEEE, 2017.
[23] S. S. Sahoo, B. Veeravalli, and A. Kumar, “Cross-layer fault-tolerant design of real-time

systems,” in DFT. IEEE, 2016.
[24] Y. Dong et al., “COLO: Coarse-grained lock-stepping virtual machines for non-stop ser-

vice,” in ACM Symposium on Cloud Computing, 2013.
[25] G. Tsiligiannis et al., “Testing a commercial MRAM under neutron and alpha radiation in

dynamic mode,” IEEE Transactions on Nuclear Science, 2013.
[26] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE ATS,

2017.
[27] ——, “Towards affordable fault-tolerant nanosatellite computing with commodity hard-

ware,” in IEEE ATS, 2018.
[28] ——, “Dynamic fault tolerance through resource pooling,” in NASA/ESA AHS. IEEE, 2018.
[29] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and be-

yond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.
[30] A. Samaras, F. Bezerra, E. Lorfevre, and R. Ecoffet, “Carmen-2: In flight observation of non

destructive single event phenomena on memories,” in RADECS.
[31] M. Darvishi et al., “On the susceptibility of sram-based fpga routing network to delay

changes induced by ionizing radiation,” IEEE Transactions on Nuclear Science, 2019.
[32] P. Maillard et al., “Single-event upsets characterization & evaluation of xilinx ultrascaleTM

soft error mitigation (sem ip) tool,” in REDW. IEEE, 2016.
[33] A. P. Ferreira et al., “Using pcm in next-generation embedded space applications,” in RTAS.

IEEE, 2010.
[34] D. S. Lee et al., “Single-event characterization of 16 nm finfet xilinx ultrascale+ devices

with heavy ion and neutron irradiation,” in NSREC. IEEE, 2018.
[35] A. Geist et al., “Spacecube v3.0 nasa next-generation high-performance processor for

science applications,” in AIAA SmallSat, 2019.
[36] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. dissertation,

Dresden University, 2014.
[37] N. K. R. Beechu et al., “Hardware implementation of fault tolerance NoC core mapping,”

Springer Telecommunication Systems, 2017.
[38] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames for guaranteed

quality-of-service in on-chip networks,” in ACM SIGARCH. IEEE, 2008.
[39] J. Zhou, H. Li, T. Wang, and X. Li, “Loft: A low-overhead fault-tolerant routing scheme for

3D NoCs,” Integration, the VLSI Journal, 2016.

